Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Biomol Struct Dyn ; : 1-16, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-2243910

ABSTRACT

A mini survey was employed in the search of herbs and spices which people believe could prevent them from contracting COVID-19. Phytochemicals which have been earlier implicated for the bioactivity of the afore-mentioned herbs and spices were identified through literature search. The phytochemicals were then subjected to pharmacore modelling, molecular docking and molecular dynamics simulation in order to identify phytochemicals that could serve as inhibitors of 3-Chymotryprin-like protease and RNA dependent-RNA polymerase of SARS-CoV-2. The drug-likeness and toxicity profile of the phytochemicals were afterwards predicted via ADMET studies. The mini survey showed ginger, garlic, bitter cola, as the lead-herbs which could find application in anti- COVID-19 therapy. Literature search revealed 27 phytochemicals were implicated for bioactivity of these herbs. Of these 27 phytoconstituents that were docked with 3-chymotrypsin-like protease and RNA dependent-RNA polymerase, the constituents of bitter cola had lower docking scores than other phytochemicals. MD simulation results showed that Garcinia biflavonoid I displayed less comformational changes and the better binding free energy. Also, the garcinia biflavonoids had relatively safe ADMET predictions. Hence, Garcinia biflavonoids and some other constituents of bitter cola could be further modified so as to obtain safe pharmaceutical intervention for the COVID-19 challenge.Communicated by Ramaswamy H. Sarma.

2.
J Mol Model ; 28(9): 279, 2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2014173

ABSTRACT

Main protease (Mpro) plays a key role in replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study was designed for finding natural inhibitors of SARS-CoV-2 Mpro by in silico methods. To this end, the co-crystal structure of Mpro with telaprevir was explored and receptor-ligand pharmacophore models were developed and validated using pharmit. The database of "ZINC Natural Products" was screened, and 288 compounds were filtered according to pharmacophore features. In the next step, Lipinski's rule of five was applied and absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the filtered compounds were calculated using in silico methods. The resulted 15 compounds were docked into the active site of Mpro and those with the highest binding scores and better interaction including ZINC61991204, ZINC67910260, ZINC61991203, and ZINC08790293 were selected. Further analysis by molecular dynamic simulation studies showed that ZINC61991203 and ZINC08790293 dissociated from Mpro active site, while ZINC426421106 and ZINC5481346 were stable. Root mean square deviation (RMSD), radius of gyration (Rg), number of hydrogen bonds between ligand and protein during the time of simulation, and root mean square fluctuations (RMSF) of protein and ligands were calculated, and components of binding free energy were calculated using the molecular mechanic/Poisson-Boltzmann surface area (MM/PBSA) method. The result of all the analysis indicated that ZINC61991204 and ZINC67910260 are drug-like and nontoxic and have a high potential for inhibiting Mpro.


Subject(s)
Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , COVID-19 , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects
3.
Struct Chem ; 33(5): 1391-1407, 2022.
Article in English | MEDLINE | ID: covidwho-1930503

ABSTRACT

COVID-19 infection is associated with a significant fatality rate in individuals suffering from severe acute respiratory distress syndrome (ARDS). Among the several possibilities, inhibition of hypoxia-inducible factor prolyl hydroxylase-2 or prolyl hydroxylase domain-containing protein 2 (PHD2) in a hypoxia-independent way is a prospective therapeutic target for the treatment of ARDS. Vadadustat, Roxadustat, Daprodustat, Desidustat, and Enarudustat are the available clinical trial inhibitors. This study is proposed to focus on the repurposing of FDA-approved drugs as effective PHD2 inhibitors. This computational study utilises e-pharmacophore hypothesis generation from the native ligand-protein complex (PDB ID: 5OX6) based on XP visualiser information. The hypothesis containing five essential features (AAANR) was incorporated for FDA database screening, followed by Glide XP molecular docking and Prime MM-GBSA binding free energy calculations. Top scored ligands were investigated and Fenbufen was identified as an effective PHD-2 inhibitor by comparing with the native co-crystal ligand (Vadadustat). The manual lead optimisation of the Fenbufen structure was adopted to improve inhibitory potency, by increasing the binding affinity and protein-ligand stability. The newly designed compounds B and C showed additional binding interactions, excellent docking scores, binding free energy, and an acceptable range of ADME properties. Also, Fenbufen and compound C owned preferable protein-ligand stability during MD simulation when compared with the co-crystallised clinical trial ligand. Based on our findings, we deduce that Fenbufen can be proposed as an effective repurposable candidate as its structural modification showed a remarkable improvement in PHD2 inhibition. Supplementary information: The online version contains supplementary material available at 10.1007/s11224-022-02012-z.

4.
Front Chem ; 9: 636362, 2021.
Article in English | MEDLINE | ID: covidwho-1247842

ABSTRACT

The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating effect globally with no effective treatment. The swift strategy to find effective treatment against coronavirus disease 2019 (COVID-19) is to repurpose the approved drugs. In this pursuit, an exhaustive computational method has been used on the DrugBank compounds targeting nsp16/nsp10 complex (PDB code: 6W4H). A structure-based pharmacophore model was generated, and the selected model was escalated to screen DrugBank database, resulting in three compounds. These compounds were subjected to molecular docking studies at the protein-binding pocket employing the CDOCKER module available with the Discovery Studio v18. In order to discover potential candidate compounds, the co-crystallized compound S-adenosyl methionine (SAM) was used as the reference compound. Additionally, the compounds remdesivir and hydroxycholoroquine were employed for comparative docking. The results have shown that the three compounds have demonstrated a higher dock score than the reference compounds and were upgraded to molecular dynamics simulation (MDS) studies. The MDS results demonstrated that the three compounds, framycetin, kanamycin, and tobramycin, are promising candidate compounds. They have represented a stable binding mode at the targets binding pocket with an average protein backbone root mean square deviation below 0.3 nm. Additionally, they have prompted the hydrogen bonds during the entire simulations, inferring that the compounds have occupied the active site firmly. Taken together, our findings propose framycetin, kanamycin, and tobramycin as potent putative inhibitors for COVID-19 therapeutics.

5.
J Biomol Struct Dyn ; 40(14): 6569-6586, 2022 09.
Article in English | MEDLINE | ID: covidwho-1087593

ABSTRACT

The outbreak of the second severe acute respiratory syndrome coronavirus (SARS-CoV-2) known as COVID-19 has caused global concern. No effective vaccine or treatment to control the virus has been approved yet. Social distancing and precautionary protocols are still the only way to prevent person-to-person transmission. We hope to identify anti-COVID-19 activity of the existing drugs to overcome this pandemic as soon as possible. The present study used HEX and AutoDock Vina softwares to predict the affinity of about 100 medicinal structures toward the active site of 3-chymotrypsin-like protease (3Clpro) and RNA-dependent RNA polymerase (RdRp), separately. Afterwards, MOE software and the pharmacophore-derived query methodology were employed to determine the pharmacophore model of their inhibitors. Tegobuvir (19) and compound 45 showed the best binding affinity toward RdRp and 3Clpro of SARS-CoV-2 in silico, respectively. Tegobuvir -previously applied for hepatitis C virus- formed highly stable complex with uncommon binding pocket of RdRp (E total: -707.91 Kcal/mol) in silico. In addition to compound 45, tipranavir (28) and atazanavir (26) as FDA-approved HIV protease inhibitors were tightly interacted with the active site of SARS-CoV-2 main protease as well. Based on pharmacophore modelling, a good structural pattern for potent candidates against SARS-CoV-2 main enzymes is suggested. Re-tasking or taking inspiration from the structures of tegobuvir and tipranavir can be a proper approach toward coping with the COVID-19 in the shortest possible time and at the lowest cost.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase
6.
BMC Res Notes ; 13(1): 527, 2020 Nov 11.
Article in English | MEDLINE | ID: covidwho-917943

ABSTRACT

OBJECTIVES: The aim of this study was to use Ligand-based pharmacophore modelling approach for four established antiviral drugs, namely remdesivir, lopinavir, ritonavir and hydroxychloroquine for COVID-19 inhibitors as training sets. In this study Twenty vanillin derivatives together with monolaurin and tetrodotoxin were used as test sets to evaluate as potential SARS-CoV-2 inhibitors. The Structure-based pharmacophore modelling approach was also performed using 5RE6, 5REX and 5RFZ in order to analyse the binding site and ligand-protein complex interactions. RESULTS: The pharmacophore modelling mode of 5RE6 displayed two Hydrogen Bond Acceptors (HBA) and one Hydrophobic (HY) interaction. Besides, the pharmacophore model of 5REX showed two HBA and two HY interactions. Finally, the pharmacophore model of 5RFZ showed three HBA and one HY interaction. Based on ligand-based approach, 20 Schiff-based vanillin derivatives, showed strong MPro inhibition activity. This was due to their good alignment and common features to PDB-5RE6. Similarly, monolaurin and tetrodotoxin displayed some significant activity against SARS-CoV-2. From structure-based approach, vanillin derivatives (1) to (12) displayed some potent MPro inhibition against SARS-CoV-2. Favipiravir, chloroquine and hydroxychloroquine also showed some significant MPro inhibition.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Chloroquine/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amides/chemistry , Amides/pharmacology , Antiviral Agents/chemistry , Benzaldehydes/chemistry , Chloroquine/chemistry , Computer Simulation , Coronavirus 3C Proteases , Cysteine Endopeptidases , Cysteine Proteinase Inhibitors/chemistry , Humans , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Laurates/chemistry , Laurates/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Monoglycerides/chemistry , Monoglycerides/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , SARS-CoV-2 , Structure-Activity Relationship , Tetrodotoxin/chemistry , Tetrodotoxin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL